2009-12-04

Linux 2.6 SPI Device Driver(quote)

Linux 2.6下SPI设备模型
--------基于AT91RM9200分析
       Atmel公司的ARM AT系列,其SPI驱动在kernel 2.6.23里已经包含。如果你打了at91-patch补丁的话,则在内核配置时要小心。在Device Drivers---- > Character devices ---- >取消选中SPI Driver(legacy) for at91rm9200 processor 。同时Device Drivers---- >SPI Support ---- > 选中SPI Support ,Atmel SPI Controler,同时选中 User mode SPI device driver support 。
SPI Driver(legacy) for at91rm9200 processor是保留选项,为了兼容以前版本。如果同时选中SPI Driver(legacy) for at91rm9200 processor,则在/sys里无法注册类spidev,也就无法将设备和驱动联系在一起。与现有atmel spi驱动发生冲突。

各选项对应的编译情况如下:
       [*]SPI support ---- Config_SPI  开启SPI功能
       [*]Debug support for SPI drivers ---- config SPI_DEBUG   开启SPI debug调试
       ----SPI Master Controller Drivers ---- depends on SPI_MASTER  生成spi.o
       <*>Atmel SPI Controller ---- config SPI_ATMEL 生成atmel_spi.o
       <*>Bitbanging SPI master ---- config SPI_BITBANG 生成spi_bitbang.o
       <*>AT91RM9200 Bitbang SPI Master  ---- CONFIG_SPI_AT91  spi_at91_bitbang.o
       ---- SPI Protocol Masters ---- depends on SPI_MASTER
      < >SPI EEPROMs from most vendors ---- config SPI_AT25 生成at25.o
       <*>User mode SPI device driver support ---- config SPI_SPIDEV 生成spidev.o
总线
注册SPI总线
#spi.c
       struct bus_type spi_bus_type = {
       .name             = "spi",   // spi总线名称
       .dev_attrs       = spi_dev_attrs,
       .match           = spi_match_device,
       .uevent           = spi_uevent,
       .suspend  = spi_suspend,
       .resume          = spi_resume,
};
spi总线将在sysfs/bus下显示。
其bus_type 结构表示总线,它的定义在<linux/device.h>中,如下
struct bus_type {
       const char             * name;
       struct module         * owner;

       struct kset             subsys;
       struct kset             drivers;
       struct kset             devices;
       struct klist             klist_devices;
       struct klist             klist_drivers;

       struct blocking_notifier_head bus_notifier;

       struct bus_attribute * bus_attrs;
       struct device_attribute    * dev_attrs;
       struct driver_attribute    * drv_attrs;
       struct bus_attribute drivers_autoprobe_attr;
       struct bus_attribute drivers_probe_attr;

       int           (*match)(struct device * dev, struct device_driver * drv);
       int           (*uevent)(struct device *dev, char **envp,
                              int num_envp, char *buffer, int buffer_size);
       int           (*probe)(struct device * dev);
       int           (*remove)(struct device * dev);
       void        (*shutdown)(struct device * dev);

       int (*suspend)(struct device * dev, pm_message_t state);
       int (*suspend_late)(struct device * dev, pm_message_t state);
       int (*resume_early)(struct device * dev);
       int (*resume)(struct device * dev);

       unsigned int drivers_autoprobe:1;
};
其中,当一个总线上的新设备或者新驱动被添加时,*match 函数会被调用。如果指定的驱动程序能够处理指定的设备,该函数返回非零值。
对于spi总线,我们必须调用bus_register(&spi_bus_type)进行注册。调用如果成功,SPI总线子系统将被添加到系统中,在sysfs的/sys/bus目录下可以看到。然后,我们就可以向这个总线添加设备了。代码见下:
static int __init spi_init(void)
{
       int    status;

       buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
       if (!buf) {
              status = -ENOMEM;
              goto err0;
       }

       status = bus_register(&spi_bus_type);
       if (status < 0)
              goto err1;

       status = class_register(&spi_master_class);
       if (status < 0)
              goto err2;
       return 0;

err2:
       bus_unregister(&spi_bus_type);
err1:
       kfree(buf);
       buf = NULL;
err0:
       return status;
}

设备
spi设备的结构如下:
#spi.h
struct spi_device {
       struct device          dev;
       struct spi_master    *master;
       u32                max_speed_hz;
       u8                  chip_select;
       u8                  mode;
#define    SPI_CPHA     0x01                     /* clock phase */
#define    SPI_CPOL     0x02                     /* clock polarity */
#define    SPI_MODE_0 (0|0)                     /* (original MicroWire) */
#define    SPI_MODE_1 (0|SPI_CPHA)
#define    SPI_MODE_2 (SPI_CPOL|0)
#define    SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define    SPI_CS_HIGH       0x04                     /* chipselect active high? */
#define    SPI_LSB_FIRST    0x08                     /* per-word bits-on-wire */
#define    SPI_3WIRE    0x10                     /* SI/SO signals shared */
#define    SPI_LOOP     0x20                     /* loopback mode */
       u8                  bits_per_word;
       int                  irq;
       void               *controller_state;
       void               *controller_data;
       const char             *modalias;

       /*
        * likely need more hooks for more protocol options affecting how
        * the controller talks to each chip, like:
        *  - memory packing (12 bit samples into low bits, others zeroed)
        *  - priority
        *  - drop chipselect after each word
        *  - chipselect delays
        *  - ...
        */
};
device结构中包含了设备模型核心用来模拟系统的信息。spidev还有设备的其他信息,因此spi设备结构包含在spidev_data结构里。
struct spidev_data {
       struct device          dev;
       struct spi_device    *spi;
       struct list_head       device_entry;

       struct mutex          buf_lock;
       unsigned         users;
       u8                  *buffer;
};
注册spi设备,
#spidev.c
static int spidev_probe(struct spi_device *spi)
{
       …
       …
status = device_register(&spidev->dev);


}
完成这个调用之后,我们就可以在sysfs中看到它了。

SPI设备驱动程序
spi驱动程序结构如下:
struct spi_driver {
       int                  (*probe)(struct spi_device *spi);
       int                  (*remove)(struct spi_device *spi);
       void               (*shutdown)(struct spi_device *spi);
       int                  (*suspend)(struct spi_device *spi, pm_message_t mesg);
       int                  (*resume)(struct spi_device *spi);
       struct device_driver      driver;
};
spi驱动程序注册函数如下:
int spi_register_driver(struct spi_driver *sdrv)
{
       sdrv->driver.bus = &spi_bus_type;
       if (sdrv->probe)
              sdrv->driver.probe = spi_drv_probe;
       if (sdrv->remove)
              sdrv->driver.remove = spi_drv_remove;
       if (sdrv->shutdown)
              sdrv->driver.shutdown = spi_drv_shutdown;
       return driver_register(&sdrv->driver);
}
spidev的驱动名如下:
static struct spi_driver spidev_spi = {
       .driver = {
              .name =          "spidev",
              .owner = THIS_MODULE,
       },
       .probe =  spidev_probe,
       .remove =       __devexit_p(spidev_remove),
};
一个spi_register_driver调用将spidev添加到系统中。一旦初始化完成,就可以在sysfs中看到驱动程序信息。

spidev类结构如下:
static struct class spidev_class = {
       .name             = "spidev",
       .owner           = THIS_MODULE,
       .dev_release    = spidev_classdev_release,
};

AT91RM9200 SPIDEV初始化
AT91RM9200的spi驱动,对于EK板,原先的SPI是用于dataflash的。其代码如下:
static struct spi_board_info ek_spi_devices[] = {
       {     /* DataFlash chip */
              .modalias = "mtd_dataflash",
              .chip_select    = 0,
              .max_speed_hz      = 15 * 1000 * 1000,
       },
我们需要将.modalias改成我们自己的spi设备名
在spi设备初始化代码中,class_register(&spidev_class)注册类,spi_register_driver(&spidev_spi)注册spidev驱动。
#drivers/spi/spidev.c
static int __init spidev_init(void)
{
       int status;

       /* Claim our 256 reserved device numbers.  Then register a class
        * that will key udev/mdev to add/remove /dev nodes.  Last, register
        * the driver which manages those device numbers.
        */
       BUILD_BUG_ON(N_SPI_MINORS > 256);
       status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
       if (status < 0)
              return status;

       status = class_register(&spidev_class);
       if (status < 0) {
              unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
              return status;
       }

       status = spi_register_driver(&spidev_spi);
       if (status < 0) {
              class_unregister(&spidev_class);
              unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
       }
       return status;
}

挂载/sys
mount –t sysfs sysfs /sys
可以看到有/sys/class/spidev/spidev0.0,表明设备已经挂载在总线上了,同时与驱动联系起来。
使用mdev –s,可以在/dev下看到spidev0.0这个设备了。
自此,spi设备驱动就可以工作了。

测试程序:



#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>

#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>

#include <linux/types.h>
#include <linux/spi/spidev.h>


static int verbose;

static void do_read(int fd, int len)
{
       unsigned char buf[32], *bp;
       int status;

       /* read at least 2 bytes, no more than 32 */
       if (len < 2)
              len = 2;
       else if (len > sizeof(buf))
              len = sizeof(buf);
       memset(buf, 0, sizeof buf);

       status = read(fd, buf, len);
       if (status < 0) {
              perror("read");
              return;
       }
       if (status != len) {
              fprintf(stderr, "short read\n");
              return;
       }

       printf("read(%2d, %2d): %02x %02x,", len, status,
              buf[0], buf[1]);
       status -= 2;
       bp = buf + 2;
       while (status-- > 0)
              printf(" %02x", *bp++);
       printf("\n");
}

static void do_msg(int fd, int len)
{
       struct spi_ioc_transfer xfer[2];
       unsigned char buf[32], *bp;
       int status;

       memset(xfer, 0, sizeof xfer);
       memset(buf, 0, sizeof buf);

       if (len > sizeof buf)
              len = sizeof buf;

       buf[0] = 0xaa;
       xfer[0].tx_buf = (__u64) buf;
       xfer[0].len = 1;

       xfer[1].rx_buf = (__u64) buf;
       xfer[1].len = len;

       status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer);
       if (status < 0) {
              perror("SPI_IOC_MESSAGE");
              return;
       }

       printf("response(%2d, %2d): ", len, status);
       for (bp = buf; len; len--)
              printf(" %02x", *bp++);
       printf("\n");
}

static void dumpstat(const char *name, int fd)
{
       __u8 mode, lsb, bits;
       __u32 speed;

       if (ioctl(fd, SPI_IOC_RD_MODE, &mode) < 0) {
              perror("SPI rd_mode");
              return;
       }
       if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) {
              perror("SPI rd_lsb_fist");
              return;
       }
       if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) {
              perror("SPI bits_per_word");
              return;
       }
       if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) {
              perror("SPI max_speed_hz");
              return;
       }

       printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n",
              name, mode, bits, lsb ? "(lsb first) " : "", speed);
}

int main(int argc, char **argv)
{
       int c;
       int readcount = 0;
       int msglen = 0;
       int fd;
       const char *name;

       while ((c = getopt(argc, argv, "hm:r:v")) != EOF) {
              switch (c) {
              case 'm':
                     msglen = atoi(optarg);
                     if (msglen < 0)
                            goto usage;
                     continue;
              case 'r':
                     readcount = atoi(optarg);
                     if (readcount < 0)
                            goto usage;
                     continue;
              case 'v':
                     verbose++;
                     continue;
              case 'h':
              case '?':
usage:
                     fprintf(stderr,
                            "usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n",
                            argv[0]);
                     return 1;
              }
       }

       if ((optind + 1) != argc)
              goto usage;
       name = argv[optind];

       fd = open(name, O_RDWR);
       if (fd < 0) {
              perror("open");
              return 1;
       }

       dumpstat(name, fd);

       if (msglen)
              do_msg(fd, msglen);

       if (readcount)
              do_read(fd, readcount);

       close(fd);
       return 0;
}
备注:
如果要设置模式,速率等,则可仿照以下语句:
speed      =10*1000*1000; //10MHz
if (ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed) < 0) {
              perror("SPI max_speed_hz");
              return;
       }
默认spi_io_transfer时,每个字节之间有延时。在atmel_spi_setup.c文件里去掉该延时语句:
              /* TODO: DLYBS and DLYBCT */
       //csr |= SPI_BF(DLYBS, 10);
       //csr |= SPI_BF(DLYBCT, 10);
这样就可以达到无间隙快速传输批量数据。
标准read(),write()两个函数仅适用于半双工传输,。在传输之间不激活片选。而SPI_IOC_MESSAGE(N)则是全双工传输,并且片选始终激活。
SPI_IOC_MESSAGE传输长度有限制,默认是一页的长度,但是可以更改。
spi_ioc_transfer结构的spi长度 是字节长度,16位传输的时候要注意。

No comments:

Post a Comment